圆锥曲线-韦达定理速解

作者:xeonds | 2021.07.06 14:45:18

2021-02-26 12:41:00

硬解定理

椭圆方程: $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$

直线方程: $Ax+By=-C$

注意:a,b大小任意,所以对于焦点在y轴的椭圆以及双曲线也适用(抛物线不清楚,貌似不适用?)。

$x_1+x_2=\frac{2a^2A(-C)}{a^2A^2+b^2B^2}$

$x_1 x_2=\frac{a^2(C^2-b^2B^2)}{a^2A^2+b^2B^2}$

$y_1+y_2=\frac{2b^2B(-C)}{a^2A^2+b^2B^2}$

$y_1 y_2=\frac{b^2(C^2-a^2A^2)}{a^2A^2+b^2B^2}$

$x_1 y_2+x_2 y_1=\frac{2a^2b^2AB}{a^2A^2+b^2B^2}$

联立后的方程

方程(消去y):$(a^2A^2+b^2B^2)x^2$$+2a^2ACx$$+a^2(C^2-b^2B^2)=0$

判别式:$\Delta=4a^2b^2B^2(a^2A^2+b^2$$B^2-C^2)$


评论