导数解题笔记

作者:xeonds | 2021.07.06 14:45:18

最近在学导数大题解法,就在这里记下我的学习心得吧。

零碎心得

  • 求导后,尽量将导数因式分解。求导的主要目的是研究原函数的单调性,故只需关注它的正负。而因式分解后它的正负情况一目了然。可以很直观地看出影响正负的因素进而求解恒成立,最小值等一系列问题。

处理导数题常用方法

  • 直接求导法。对于一些简单题只需要求导得到原函数增减性,进而得到极值,零点等。
  • 分离参数法。适用于含有参数的项能够合并的情况。使用应考虑分参后得到的另一边的函数是否易于研究。如果难以研究,那么可以考虑更换其他方法研究。
  • 构造函数法。现在见到的有两种方法。其一是移项构造新函数,其二是在等式两边构造形似函数,通过研究该函数的单调性来解题。
  • 主元法。它的核心思想就是将式中的参数(比如a)看作自变量,这样式子的单调性就很容易判断了,式子的最值或取值范围也因此更好判断。也就是说,主元法最大的作用就是消参。
  • 端点效应。通过对式子的观察,有时我们可以发现一些很明显的零点。比如对于f(x)=ln(x+1)-x,我们可以直接发现x=0是一个零点。并且不难发现f'(0)=0这个特殊点。因此很容易就可以得出f(x)的增减性。
  • 隐零点法。有时我们做导数题,利用导函数判断单调性时,会碰到f'(x)=ln(x)-x之类难以直接求出零点的式子。这时不需要直接求出零点,只需要假设f'(x)的零点,也就是假设f(x)的极值点(比如此处假设a是f'(x)的一个零点),再将ln(a)-a=0的等量关系代入f(a),即可求出f(x)的极值大小。
  • 放缩法。主要是证明不等式的时候用。在导数的恒成立问题中也有用武之地。比如说,要证一个函数在正实数域恒小于0,你已经求得它的最大值,它可能是这样的:ln(x)-x(或者其他更复杂的形式)。如果你发现这种形式不太好求它的极大值是否大于0,那么我们就可以用常用放缩式ln(x)≤x-1把它放大,得到ln(x)-x≤x-1-x=-1<0,问题解决。不过在使用放缩法的时候一定注意不等号方向,放反了可就不好玩了(

评论